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Random-Cluster Representation for the Blume—Capel
Model
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We present in this paper a way to perform the mapping of the spin-1 Blume-
Capel model into a random-cluster model, and analyze thermodynamic proper-
ties of the former model in terms of geometric properties of clusters generated
in the random-cluster representation. It is shown that there are two different
relevant types of cluster, and that one of them is the exact analogue of the type
of cluster generated in the Ising model. We use this result to derive expressions
for thermodynamical properties on the second-order transition line which are
equivalent to the ones found in the Ising model. The other type of cluster is
responsible for the first-order transitions, and we may see the tricritical point as
a point where both types of cluster compete on the same footing.

KEY WORDS: Phase-transitions; percolation; tricritical point.

1. INTRODUCTION

The description of thermodynamical phase transitions in terms of percola-
tion models was introduced by Fortuin and Kastelyn in 1969,"% when it
was shown that the g¢-state Potts model can be mapped into a random
cluster model, and the percolation transition associated with the emergence
of an infinite cluster is related to the divergence of the correlation length in
the second-order phase-transition of the spin model.

Over the years this connection proved very fruitful. FKG inequalities,
extremely useful in finding bounds to critical exponents, were first derived
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using a random cluster representation.® More recently, this representation
has been used to derive exact large deviation bounds** and magnetiza-
tion discontinuity® in some types of Ising models. Pfister and Velenik”
generalized the random cluster representation in order to map the Ashkin—
Teller model into a percolation model.

Generally speaking, the map provides a unifying view over different
models, allowing the description of one model in terms of concepts
borrowed from others. An interesting use of this feature is the algorithm
devised by Swendsen and Wang® to simulate the Potts model by means
of a cluster Monte Carlo simulation. This method generates non-local spin
updates, resulting in a smaller dynamical critical exponent and providing a
way to overcome the phenomena of critical slowing-down that happens at
second-order phase transitions.

In one way or another, all applications described so far build upon the
inversion symmetry possessed by Ising variables. The purpose of this paper
is to present a random cluster representation of the Blume—Capel model,
a model where inversion symmetries do not represent a full description of
the different phases present in the phase-diagram. Not only have we a
second-order transition line of the Ising type, but also a first-order phase
transition between asymmetric phases. These two lines join at a tricritical
point, where three different phases become indistinguishable. How is it
possible for a cluster description to capture all these physical features?

In this paper we show that there is indeed a way to map the Blume-
Capel model into a percolation model. As could be expected from its com-
plex phase-diagram, this representation is richer than the one for the Ising
model, in the sense that there now exists two different kinds of clusters,
playing different roles for each type of transition. The tricritical point
becomes particularly interesting, since there the different types of fluctua-
tions become equivalent, and the two different clusters should perform
similar roles. The mapping we present was inspired in a cluster Monte
Carlo algorithm proposed by us® in the more general context of the
Blume-Emery—Griffiths model.'® It is by no means unique and in ref. 11
a different formulation is presented. This situation was already present in
the Ising model, where there are also different ways of performing the
mapping. This issue is addressed in the conclusions, where a physical
criterion for selecting the most appropriate way of doing the mapping is
presented.

The paper is organized as follows: in Section 2 we describe the Blume—
Capel model and a cluster algorithm for its simulation, Section 3 contains
the mapping into a percolation model, and Section 4 relates the mapping
with the Monte Carlo algorithm. In Section 5 we discuss theoretical aspects
of the map, point some directions for future work and draw the conclusions.
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2. BLUME-CAPEL MODEL AND CLUSTER ALGORITHM

The Blume-Capel model was introduced independently by M. Blume'?
and H. Capel'® in 1966 to explain first-order phase transitions not driven
by magnetic-field effects. Its main importance nowadays stands for its being
one of the simplest generalizations of the Ising model to possess a tricritical
point. Its Hamiltonian in temperature units is defined as

p#=—KY S,85+4Y 82,  S,=+1,0 (1)
<ijy i

where § = 1/ky T. Throughout this paper we denote spin values +1, 0, —1
by +, —, 0, respectively. The first sum runs over nearest neighbors and the
second one over all sites on a d-dimensional hypercubic lattice. The first
term represents an exchange interaction, as in the Ising model, and in the
second term 4 may be interpreted as a cristaline field or as a chemical
potential. Its phase-diagram is represented schematically in Fig. 1.

The vertical axis is the temperature. Continuous second-order phase
transitions are represented by a solid line, while the dotted one represents
first-order transitions. These two lines join at point P, called tricritical
because in the presence of a magnetic-field coupling two other second-
order lines depart from it. The second order line belongs to the Ising
universality class, while the first-order line marks the coexistence of three
different phases, two ferromagnetic ones with opposite spin signal, like in
the Ising model, and a third paramagnetic one, which at low temperatures
is constituted mainly by zero spins. At the tricritical point we expect critical
exponents to be mean-field like, except for logarithm corrections.!¥

Cluster Monte Carlo simulations are successful in Ising models
because they correctly pick up the relevant physics of fluctuations in the
model. Since the second-order line of the the Blume—Capel model is of the

T

A

Fig. 1. Phase-diagram of the Blume-Capel model.
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Ising type, it is reasonable to expect the same type of cluster to perform
well in this line. This is indeed the case, as confirmed by the use of an
embedding algorithm."> 'V This kind of algorithm has two different steps,
one that makes use of an Ising-like cluster, leaving zero spins unaltered,
and one with a Metropolis procedure, to ensure ergodicity.

Although efficient in second-order transitions, this sort of procedure
does not address what is happening in the first-order line. There we have
a transition between a ferromagnetic phase and a paramagnetic one, where
most of the spins are zero. A procedure that leaves the number of zero
spins unchanged is clearly unsuitable for this kind of transition, and conse-
quently for simulation near the tricritical point. Furthermore, it is a com-
putational approach, bearing no relationship to a percolation description
and being unable to give any of its insights.

In ref. 9 we described a cluster algorithm that can successfully deal
with both types of transitions. It is a Wollf type algorithm,!> in the sense
that it generates just one cluster per step, and can be described as follows:

e Choose randomly an initial site for the cluster—the seed.

e Choose with equal probability one of the two spin values different
from the seed’s one. We will try to change the seed to this new spin value.

o If the transition involved is of the type + < F, use Wolff’s algo-
rithm exactly in the same way as in the Ising model. Connect nearest
neighbors spins that are equal to the seed with probability p =1 —e 2%,
Repeat this procedure for each new spin connected, and continue until all
neighbors to a connected spin have been tested, and no new connection
made. Next, identify a cluster with the set of all connected spins, and
reverse the sign of all it’s constituents spins.

o If the transition is of the type +1 <> 0 we proceed differently. Two
different kinds of spin are allowed in the cluster, spins equal to the seed or
spins equal to the value we are trying to change the seed into. For all
effects, these two spins are regarded as the same in the linking procedure.
The spin value that cannot be linked to the cluster will be called forbidden.
The linking procedure is performed in the same way as in the preceding
item, but the linking probability now is p =1 —e X, The fact that we have
two different spins values in the cluster only appears when we consider
updating the cluster. This is done in the following way: to each spin in the
cluster, we add to its spin value the value of the spin forbidden to the
cluster. To exemplify, consider that our seed is a + spin, and that we are
trying to change it to a 0 spin. The cluster may be made of + and 0 spins,
and they will be transformed as + — 0 and 0 - —, which amounts to
summing —, the forbidden spin, to each spin value. The transition is not
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(a) (6)

+ [+ — 0 |+

Fig. 2. Possible boundary between a cluster and its surroundings, before (a) and after transi-
tion (b).

made automatically, being accepted with probability Py, = exp( — 4 H)
if’ the bulk energy of the cluster increases, or with probability Py, =1 if it
decreases. 4, is the internal energy of the cluster, calculated disregarding
links between spins in the cluster and spins outside it.

A proof that this procedure satisfies detailed balance can be found at
ref. 9. For transitions that only change spin signs the proof is exactly the
same as in the Wolff algorithm for the Ising Model. An intuitive under-
standing of why the second step also satisfies detailed balance may be
achieved through Fig. 2.

In (a) we represent a possible boundary between a cluster that may
contain + and 0 spins (surrounded by a solid line), and in (b) the same
boundary after changing the spins that belong to the cluster. It is clear that
the ratio between probabilities of not linking the spin with its neighbor-
hood results exactly in the required quantity exp(— f45# ). For example, in
the (a) configuration the probability of not linking the represented spins is
1 —p=e~% while in b it is 1, since + is a forbidden spin there. The ratio
is exactly what is needed to balance the difference in energy of this par-
ticular contour. The flipping probability responds for the energy difference
inside the cluster. An important point is that it does not include interac-
tions with spins outside the boundary, whose energy difference after the
transition is automatically taken into account when building the cluster.
Otherwise, we could get very slow dynamics.

Is this cluster algorithm just a computational approach that enables us
to perform an efficient Monte Carlo simulation, or does it reflects a deeper
connection between this model and a percolation one? Answering this
question amounts to following the inverse track performed in the Ising
model, using the cluster algorithm to achieve the random-cluster represen-
tation.

As described the algorithm is of the Wolff type, unsuitable for a ran-
dom-cluster representation. To achieve the latter it is necessary to represent
all spins on the lattice into a bond analogue. In the Ising model it is easy
to extend the proof of detailed balance from the Wolff algorithm to a
Swendsen—Wang one (see ref. 16), since by symmetry when two neighboring
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clusters are modified it is as if none of then have changed. Here this sym-
metry is no longer present, and the proof needs to be carried out in another
way. In the next section we show how to perform this task.

3. AN ALGORITHM OF THE SWENDSEN-WANG TYPE

The algorithm just presented has some unusual properties. It is dif-
ficult to understand why it is possible to connect zero spins, since there is
no linking energy associated with them in the Hamiltonian. Also strange is
the fact that in some clusters we may connect two types of spin, but not
the third one. This is an asymmetry not present in the Hamiltonian.

Devising a Swendsen—Wang algorithm that generalizes the previous
algorithm is also challenging. Some points seem to make such a generaliza-
tion impossible. For example, the connection between two + spins may be
made with two different probabilities, depending on the type of cluster that
is being built. But this type is not known in advance, since in a Swendsen—
Wang algorithm we first establish connections between spins, and only
after we identify clusters. Also, how can we know the two different types of
spin allowed in a cluster, before identifying a cluster?

In order to deal with these problems it is convenient to perform the
following change of variables:

(2)
v,=—S7+S8;+1
which may be represented as in the following table:
S u v
+ 4+ o+
o - +
Note that there is not a state such as u= +, v= —. This is a constraint

that must be taken into account when writing the partition function and in
the development of the cluster algorithm.

From the previous definition we find S;= (u;+ v;)/2, and with this
substitution the Hamiltonian becomes

K Y|
pA = I Z (uip;+ Vivj+/"ivj+/"jvi)+z Z(ﬂi+vi)2 (3)
<> i
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Fig. 3. Possible configurations and respective energies.

This is different from the approach followed in ref. 11, where all four
different combinations of states u v are allowed, and the proper statistic
weight achieved through a correction term in the partition function. This
new approach is necessary in order to re-obtain the previous algorithm,
which we believe to be the most appropriate to describe the physical
features of the model.

In the absence of cristaline field, it is convenient to distribute the
different possible energy configurations as indicated in Fig. 4. We use the
representation

Hi M

V.

1

Vi

for a neighborhood {ij ), the u lattice being represented above the v lattice.

Reading Hamiltonian (3) it may seem natural to define bond
probabilities as in the Ising model, for each one of the four linking terms
in the Hamiltonian. But this is not possible. If we build clusters that way
at the end we would be left with independent clusters in each lattice, what
would result in configurations not satisfying the constraint between the

++ - -

Uy El——-——K
++ - -

u Ey =0
2++ 2
R +_

U E; =0
e
- - -+

U Ey=0
B

w 7 TV EB=ok
+ - -+

Fig. 4. Possible configurations and respective energies.
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Fig. 5. Possible bond operations.

V)

variables. The correct approach is to define bond probabilities as in Fig. 5.
In this figure, a wavy line represents a bond between spins with different
signals, while a solid one a bond between equal spins. For example, a p bond
between a neighborhood {ij) in lattices 4 and v would be represented as

Hi 127}
vV Vv

We are left now with the problem of devising a cluster algorithm that
uses these bond probabilities and satisfies detailed balance. To find the
right value for the bond probabilities we make use of a general scheme
devised by Kandel and Domany.'” It modifies the original Hamiltonian
through two different types of operations, called freeze and delete opera-
tions, in such a way that the cluster algorithm becomes natural in terms of
the new Hamiltonian. These operations are defined in such a way that the
final algorithm satisfies detailed balance.

To implement the procedure, it is useful to visualize the different bond
probabilities as in Table I. The u; are the energy configurations represented
in Fig. 3, and for each one of them we can perform different bond
probabilities. P,(u;) represents the probability that no bond is established
in a given configuration. The bond operations p, ¢, r and s are the freezing
ones, while the P,(u;) are deletion operations.

The point is that in order that the cluster algorithm satisfies the
detailed balance condition it is sufficient to require that the sum of
probabilities of performing any operation in a given configuration to be
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Table I. Freeze and Deletion Probabilities for Different Energy Configurations

X X X A

(uy) rq p(1—¢q) q(1—p) 0 0 Py(uy)
(uy) 0 0 q 0 0 Py(uy)
(u3) 0 0 0 r 0 P ,(us3)
(1g) 0 0 0 0 s Py(uy)
(us) 0 0 0 0 0 Py(us)=1

one (normalization condition) and to link all deletion probabilities through
the relation
Py(u;)=efi= (4)

where E; is the energy of a particular configuration u; and C, is a constant
independent of this particular configuration. The motivation for choosing
P, (us)=1 comes from the fact that this is the configuration of highest
energy, and we do not want to freeze it. With this choice, C,;= K, and all
other deletion probabilities are also defined. The value of the freezing
probabilities come from the normalization condition, and we find

Py(uy)=e?K P () = Py(us) = Py(uy)=e X (5)
and
p=g=r=s=1—e"K (6)

This procedure obeys detailed balance, as can be easily checked by
taking examples of specific transitions. But is this algorithm equivalent to
the one devised for the Hamiltonian in terms of spin 1 variables?

At first sight it is not. In the previous algorithm we had two different
bond probabilities, p=1—e~?X for clusters of the Wolff type and
p=1—e% for clusters constituted by two different types of spin. In the
new one there is just one bond probability, and no sign of forbidden spins
to a specific cluster.

But the algorithms are indeed similar, as can be confirmed by con-
sidering each one of the different transition possibilities. In a Wolff transi-
tion between a cluster made of two + spins and a cluster of two — spins
the probability of linking spins in the cluster is given by p=1—e¢ 2K In
the new variables u and v this transition is represented by

i+ tu; Hi— —H;

—
v+ +v; Vi— —V;
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Fig. 6. Transition that changes spins modulo represented in S variables and in u, v variables.

and may be done in three different ways,

Xor >< or : (7)

Consequently, the probability of performing this transition is

P=pqg+pl—q)+q(1—p)=1—e* (8)

and we see that probabilities in the two representations are indeed the
same.

What about a transition that changes the spin modulo in the cluster?
It is represented schematically in Fig. 6.

In the u, v representation the way of performing this type of transition
is through links of type

9)

In u, (see Table I) this probability is given by P(u;)=(1 —e *)e %,
while in u, it is P(u,) =(1 —e~%). The additional e ¥ term refers to the
change in the internal energy of the cluster. Here it is taken into account
at each linking step, while in the original algorithm it was considered only
through the flipping probability. The way we take into account the dif-
ference in the internal energy is just a matter of choice and convenience.

The last issue refers to the presence of forbidden spins. In the new for-
mulation this concept is no longer present, but occurs in an indirect way.
Consider the situation when the three different kinds of spin are present in
the same cluster, a situation that never happens in the spin S formulation.
The only way to connect spins with opposite signals is through one (or
more) zero spins, like the following:
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In the u, v representation the bonds for this cluster must be given by
ey
+ o+ -

The only spin configuration compatible with this configuration of
bonds is the one represented above, and there is no spin transition
associated with it. Thus, every time we build a cluster that contains three
different types of spins they will not change, and this explains the role of
forbidden spins. It is not that we cannot build clusters with them, but only
that if we have made that then all spins would have remained unchanged.
It is better not to build them at all.

The cristaline field can be easily introduced, because its only relevant
contribution will be through the term exp((4/2) u;v;), representing anti-
ferromagnetic interactions between spins x; and v;. Thus we can link spins
S =0 throughout a bond probability between opposite spins u, v given by
p=1—e~4. Due the the constraint between variables, there is only one
configuration compatible with this bond. Again, every time we make such
a connection all spins in the cluster remain the same. In order that a transi-
tion in the spin modulo to be possible it is necessary that no bond between
zero spins is present. The probability for this to happen is e =™, where N,
is the number of zero spins in the cluster. Once more, in the original algo-
rithm this term was considered in the flipping probability, and again the
two procedures are the same.

We have concluded the development of a Swendsen—Wang like version
of the algorithm previously proposed. The existence of such an algorithm
indicates that the model may be mapped into a percolation one, and in the

next section we make use of the ideas introduced in this section to derive
the mapping.

4. RANDOM-CLUSTER REPRESENTATION

The existence of a Swendsen—Wang like algorithm indicates that it
should be possible to find a map into a percolation model. In this type of
algorithm new bond variables are added to the original spin configuration.
Initial spin values are then disregarded, leaving a configuration where only
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bonds are present. New spin values compatible with this given bond con-
figuration are then chosen. The intermediate step where only bond
variables are considered shows that it is possible to represent the model
only in terms of bonds, which should correspond to a percolation model.
In what follows, an explicit formula for the partition function of the
percolation model is derived.

In the absence of cristaline field, the partition function of the Blume-
Capel model in terms of variables x, v is given by

* K K K K
Z=> 1] exp /liuj—kv,-vj} exp {,u,-vj—i—,ujv,- (10)
{m. v} <> 4 4 4 4

where the star indicates that the sum must be carried out only over states
that obey the constraint between the variables. It may be rewritten as

ZL=) AR (11)
7%
where
A =1 —e75) 3,0, + (e ¥ —e75)5,,(1-6,,)
+ (e K2 _¢—K) 5v,-v,(1_5ﬂiﬂj)+€_K] (12)
and
e%’zeK/z[(l—e_K)(5ﬂivl_5ﬂjvi+(e_K/Z—e_K)éﬂivj(l—(5ﬂjvl_)
+ (e K2 oK) 5ujv,-(1_5ﬂ,-v,~)+e_K] (13)

Using now symbolic notation from Fig. 5, and introducing the symbols

N s (1=5 s
- vivj( o ”i’uj) AN /4,'/4]'( - V,-Vj)
we may rewrite .o/ as
of = K2 (1—e=K) +e—K+e—K/2(1_e—K/2) -
— MY

+ e K2(]1 — e %72 (14)
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or
K K\ _K _K _K W
o =e [(l—e )7+e }{ 24+ (1 /2)<'\/VV\/+_>}
—~" ~ —~"
Al A2 (15)

Similarly, 4 may be written as

g:eK{il—eK)X"‘e H e %ﬂ

—_—~—
B1 e (16)

The terms A1 and B1 are already in a convenient form. Due to the
constraint between variables,

= N,

meaning that configurations compatible with this set of bonds are the
same. We conclude that 42 = B2, and rewriting in convenient way,

AzzeK/2[e—K/2+(1 —e_K/Z)N Me—mﬂl e—K/2)%} (17)

We may then rewrite the partition function as

o5 mesamen " we]famen > ]

{w v} <>

x{(l—eK) NJreKH(I—eK)%JreK} (18)

Disregarding constant terms, the cristaline field is introduced by multi-
plying the above partition function by [T]; exp[(—4/2) i;v;], which in
symbolic notation becomes

n[(l—e_")é—i—e_"} (19)

where §E (1—9,,,) was introduced to represent bonds between spins g,

and v; with opposite signals. This type of bond will be indexed by the label ¢.
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The complete partition function, up to constant factors, is given then
by

Z = Z ﬂﬂl—e"()+e"<ﬂl—e ><+e_K}

{w vy <G>

x[(l—e_K)N +e_KM(l—e_K)% +e—KN
xﬂ{[ (1—e—4) §+e4H (20)

It is still written only in terms of spin variables, but bond variables
may now be easily introduced. Using the labels p, ¢, r and s for bond
variables defined in Fig. 5, the ¢ label for cristaline field interactions, and
considering that each label may assume two different values, 0 for absence
of bond and 1 for its presence, we rewrite the partition function as

7=y ﬂ{i [ 1—e-K)(5q1+e—K5q0H

{u v} <>

X

{ (1—e~
x{ (1—e~ %5“4-61(5“)}}
x{]‘[ i { (1—e- §5,1+e a3 ’OH (21)

or else,

5q1 + e_K5q0:|

7=y % {H{(l—e*)

{w. v} {a. pros 1} <G>

{ (1—e™ ><51,1+e’K5 H (1—e™ N&,l—i—e ) ,O}
x[(1_e—K)%5sl+e—K5s0H{1j[{(1—e—ﬂ)§5,1+e—45,0”

(22)

where 3¢, , . denotes a sum over all possible bond configurations.
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Considering now that each possible bond configuration constitutes
a graph G', and that the set of all possible bonds configurations is G, we
rewrite the above expression as

7= ¥ Ln <1—ef<>][<n e |

{mv} G'=GL > q=1 i>:9=0

X<ij>1:_z[z—1(1_eK)><H<y>:p—oeK}
: <,~,->1;_!_1 (= N M<y‘>:r—oe_K}
L1 0memg ] ]
x_”n_11—ed)§ﬂu_oe } (23)

This is the joint partition function we referred to in the beginning of
the section. In order to find an equivalent percolation model, we must sum
over spin states.

The first step in this direction is to identify clusters as sets of spins
joined by a continuous path of bonds. In the Ising model all spins connected
to a cluster must have the same sign, but here the situation is far more
complicated, since due to the » and s bonds all three types of spin (in the
S representation) may appear in the same cluster. Furthermore, the number
of states compatible to a given configuration depends on the number
of different spins belonging to the cluster, and the type of bond present.
A cluster may be constituted by spins on both lattices, u and v, or by spins
in just one of them (when constituted only by ¢ bonds, or no bond at all).
Each possible case has to be analysed separately.

The simplest case is when only one type of spin appears in the cluster.
There are two different possibilities, depending on whether there is a p
bond present or not. If it is present, we may have only + or — spins in
the cluster, whilst if it is not 0 spins are also possible.

The second possibility is a cluster made only of two different types of
spin. Here we can match two spin configurations to a given bond con-
figuration, for example,

+ + -
BN 2
+ + o+
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or
BN 2s)

+  + =
Finally, a cluster may have all three different types of spin, with zero
spins providing a bridge between spins with different signs. For this type of

cluster there is a unique correspondence between spin and bond configura-
tions. An example is given in (26).

S
BN 28)
+ + + - -

Spins of different signs may get connected to the same cluster only
through zero spins, and these connections are always through r or s bonds.
Spins zero work like a glue that binds the cluster together.

It is useful now to introduce the concept of a spin island. We may see
the cluster as a collection of different blocks, each block containing spins
with the same value. Each one of these blocks we call a spin island. In (26)
we had three different islands: one of + spins, one of — spins, and a 0 spin
island connecting these two islands of opposite signs.

Note that permuting all » and s in a given configuration results in a
change of sign of spins belonging to all islands constituted by non-zero

spins. For example, permuting » and s bonds in the last figure would result
in the following configuration:

e
% % (27)
- - + + +
Let us now sum up over spin configurations taking into account the
more general Hamiltonian where there is also a magnetic field present
in the form BY; S;=(B/2) >, (u;+ v;). Its contribution to the partition
function is [, exp[(B/2)(u;+ v;)]. Our strategy consists in writing every
possible cluster contribution in a hyperbolic cosine form, in the same way
as in the Ising model.'®
When the cluster is made of just one type of spin we have two different

contributions, as explained before. When p bonds are present each of these
clusters give a contribution

)4

u

vV

u

vV

(54 e 2) (28)
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whilst when they are absent the contribution is
(1 +eBn+ean) (29)

since now the cluster may also be constituted by zero spins. In the above
expressions n is the number of spins in an island, which in this case
corresponds to the whole cluster.

When there are two different types of spin in the cluster, two different
spin configurations are compatible with a given set of bonds, but they do
not contribute with a cosh. This is the reason why we introduced the island
concept: if we permute all » and s bonds present, the sign of all spins in the
cluster will flip, resulting in the desired cosh contribution. After permuta-
tions, the contribution of this type of cluster is of the form

|:l_‘[(eBn+e—Bn)} +{n(eBno+e—Bno) (30)
il i0
where the first product is over all islands of spins + or —, while the second
one is over 0 spin islands. By n, we mean the number of zero spins in this
type of island. If a z-like bond is present, the second product will not
appear, since zero spins would be frozen.

When the cluster has three spin types there is only one possible spin
configuration. However, as before, if we add r <> s permutations we again
get a hyperbolic cosine. The resulting contribution is

e )] (31)

where the product is over all spin islands.
Let us introduce now the following notation for the part of the parti-
tion function that generates bonds:

ma, p)=| I <1—e’<>H eK}
L<ijyig=1 - (> q=0
{ L]
—<ij>1:_£:1 >< {ijy: p=0
IS RS
7<ij>l:—£=1 N {ijy:r=0
(Lo ]
7<ij>li_A[‘:1 % <ij>1:_£=0
<| 11 (1—e—A)§H e“'} (32)
Lizr=1 iit=0
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Joining all different contributions and summing over spin states the
partition function becomes

7= Y @, p) {]—[ (eB"+eB")Mn (1 —I—eB”—i-eB”)}

G =G A C
x{ﬂ(eB”—i-eB")—i—l—[(eB"O—i-eB"O)} (33)

where the per symbol over the sum means that configurations that differ by
a permutation of all » and s bonds should be summed only once. As before,
the constraint between variables must be obeyed. The A4 product is over
spin islands that belong to any cluster where there are p or ¢ bonds present,
or to clusters with three different types of spin. The C product runs over
clusters made only of ¢ type bonds. D and E products belong to clusters
with two different spin types, the first one being over islands of spins + 1
or —1 and the second one over zero-spin islands.

This is the partition function of the corresponding percolation model.
In order to reobtain the original partition function it is necessary to rein-
troduce spin variables obeying the original constraint between variables
and are compatible with a given bond configuration. Summing then over
bond configurations would bring us back to the Blume—Capel model. Note,
however, that some bond configurations are not compatible with a spin
configuration, due to the constraint between variables. This is the case of
configurations that have a consecutive set of prp or psp. These kind of
configurations have zero statistical weight.

It is possible now to compute physical quantities in terms of properties
of the clusters generated by the percolation model. The magnetization is
given by

1 0
M(G = 1li Iim ——mIn% 34
(G, p) BE%* Nlj;noo N OB n (34)

or

per

0
(G, p) —
GEG (G p) 7

X {[ﬂ (eB"—i-e_B”)Mn (1 +eB”+e_B”)}

A C

M= lim lim
B—>0+t Noow NZ

><{n(eBn_}_e—Bn)_l_n(eBnO_}_e—Bno)}} (35)

D
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The hyperbolic sine that results from the derivative will be zero in the
limit B — 0, unless the cluster percolates. When crossing the second-order
line from the paramagnetic region, the first cluster to percolate comes from
the 4 product, since they may contain a p bond, while others may not. As
a consequence, others clusters have a substantially smaller bond probability.
Using this hypothesis, we find that the magnetization through the second-
order line is given by

per
= lim — II(G', p) N 2"~ 13re[ 2% 4 2% 36
M= lim 3G N2 (36)

where N, is the number of spins in a type A4 cluster that percolates, n, is
the number of A clusters that do not percolate and so on. To derive this
expression it is assumed that only type-4 clusters are percolating. Redefining

IT*(G', p) =1I(G', p) 2"a3"[ 2" + 2" ] (37)
and considering that in the limit lim,_, ., n,—1~n,, we rewrite the
magnetization as

1z N,
= lim — n*(G —= 38
M= lim Y 1%G.p) (38)

which shows that the magnetization is the probability that a spin belongs
to a cluster that percolates.
The magnetic susceptibility is given by

2

0
x(G, p)= hm Iim ——In% (39)

S0+ N>ow OB?

We find a similar expression to the one found for the Ising Model'®:

f

2(G, p)—th =ty HG,p))y -
- ® G'SG c

[NAG')—N(G")]?

li -2 G 1 G"

N— o G'=G G"<=G

(40)

where >/ is over all islands that do not percolate, including islands that do
not result from the 4 product. The first term in this expression is the mean
cluster size, and similarly to the Ising model we may argue that the second
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term contribution remains finite. The conclusion is that the susceptibility is
the mean size of islands built by the algorithm.
The expression for the correlation function between spins is

(o,00) =2 (G, p) {1‘[ (eB”+e_B”)} [1‘[ (1+e + =)

{uv} A C

n(eB”+e_B")+n(63”0-1-6_3"0)} 0,05 (41)
E

D

If o, and o, belong to the same island o,0, =1, otherwise g,0, = +1
with the same probability and the contribution of this graph G’ to the sum
of configurations is zero. The correlation function is given then by

per
{o,0,>=lim Z~! [ Z IT*(G', p) d(a, b)} (42)
N— oo G'=G
where
1 if @ and b are in the same island
= 4
ola, b) {0 if @ and b are in different islands (43)

The last expression is the pair-connectedness function of the percola-
tion model, when spin islands generated by different clusters are taken into
account. This result shows that the exponent v, relative to the correlation
length when p — p, is the same as the v exponent of the Blume—Capel
model. Similar results may be deduced for the energy and specific-heat
exponents.

Clusters that control the second-order transition line are type A
clusters or, more specifically, clusters constituted by p or ¢ bonds. These
clusters are built with probability p=1—e~2%, as in the Ising Model.
A consequence is that second-order transitions in both models belong to
the same universality class. Although the lattice may be substantially dif-
ferent due to the presence of zero spins, the above results show that the
mechanism controlling the transition is basically the same.

An interesting point is that the relevant percolation properties are
connected to the size of islands belonging to a cluster, rather than to the
cluster itself.

We have described so far the second-order transition line in terms of
percolation properties. Were does the first-order transition line and the tri-
critical point fit in the scheme? The key point is that although second-order
transitions are always controlled by Ising like clusters, transitions between
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spin’s modulo will have the extra help of ¢ bonds. These bonds fix zero
spins into the lattice, and so it is to be expected that as the cristaline field
increases the number of zero spins also increase, despite the fact that bond
probabilities for these clusters are smaller than for Ising clusters. At a cer-
tain point, Ising and zero-spin clusters will compete on the same footing,
and this is the tricritical point. If we keep increasing the ¢ probabilities (by
increasing the cristaline field) clusters that result from a change of the
spin’s modulo will predominate, resulting in the first-order line.

5. CONCLUSIONS

The mapping just presented is not unique. Reference 11 presents a dif-
ferent approach, where as in this paper the mapping is done through a
decomposition into Ising variables, but the constraint between variables is
dealt with a correction term in the partition function. However, the authors
were interested only in the case D =1In 2, a special point where the scheme
proved efficient. It is also possible to simulate the model using an embedding
algorithm that alternates Ising cluster steps with Metropolis ones, to ensue
ergodicity.

Our own simulations show that both procedures are sufficiently good
only on the second-order line. On the first-order transition line both proce-
dures are not sufficient to eliminate hysteresis effects, and the simulation
close to the tricritical point becomes problematic. The reason why an
embedding algorithm does not perform well is clear: it fails to incorporate
the necessary transitions that change spin modulus. The reasons for the
failure of the other algorithm are more subtle. Although it does generate
transitions between spin’s modulo, it fails to generate the appropriate
clusters, in the sense that clusters generated will be too large and more
likely will not be updated, due to a transition probability associated with
the internal energy.

The algorithm dynamics is very sensitive to this kind of balance, it is
very ease to formulate a cluster algorithm whose clusters do not move at
all. The good performance of our algorithm (tested in ref. 9) is due to the
fact that it does generate the appropriate clusters, in the sense that it is
possible to relate thermodynamics properties like magnetization in terms
of cluster properties. This is an important criterion when analysing more
complicated models where frustration plays a significant role.

Unfortunately, we still have not been able to measure thermodynamical
properties directly from the percolation model, for example, magnetization
as a probability of a given spin to belonging to a percolating cluster. The
percolation model obtained is too complicated to be used as a Swendsen—
Wang type algorithm, since it would require our keeping track of individual
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properties of each cluster, like the number of zero spins. The use of a Wolff-
type algorithm that generates just one cluster per step is more efficient.

The possibility of representing a model that has a tricritical point in
a percolation formulation is also very promising from a theoretical point of
view, since up to now only models where Ising-like symmetries play a
predominant role have been mapped. The existence of two competing
clusters at the tricritical point is a very interesting feature of the model. In
this paper we have not explored further these possibilities from a more
quantitative point of view, keeping it at a more qualitative level. A quan-
titative analysis may be quite fruitful, providing a different approach to
analyse effects like finite-size scale, which has been quite controversial in
asymmetric first-order transitions. Also appealing is the possibility of
generating FKG inequalities, and being able to characterize the tricritical
point in terms of percolation concepts.
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